
CUNY PONDER

The PrOgramming laNguages anD
software Engineering Research Lab

CUNY PONDER, situated at CUNY Hunter College, works at the intersection of software
engineering, programming languages, and (Machine Learning) systems.Our lab
develops and assesses techniques for automating critical software engineering tasks,
including (static and dynamic) program analysis, software evolution and
maintenance, and empirical software engineering. Our work results in algorithms and
associated tools that analyze and transform (e.g., refactor) large and complex programs
for improved modularity, comprehension, maintainability, safety, security, and
performance. The techniques span multiple subfields of theory and application, such as
programming languages, type theory, (front-end) compilers, data science,
informational retrieval, and mathematical logic. We collaborate with the DAIR lab.

Professor

Raffi Khatchadourian

We are funded by the National Science Foundation (NSF), the Japan Society for the Promotion of Science (JSPS),
Amazon Web Services (AWS), the Verizon Foundation, and the CUNY Diversity Projects Development Fund (DPDF).
Our graduates have obtained research positions at prestigious universities and work at Google, New York Times,
Squarespace, TD Ameritrade, New York Foundling, J.P. Morgan, and AD/FIN. Our publications have appeared in top
software engineering and programming language conferences and have won distinguished paper awards.

Get in touch at ponder@hunter.cuny.edu and find out more at http://ponder-lab.github.io.

Students

Tatiana Castro Vélez Yiming Tang Ye Paing

Allan Spektor Oren Friedman David Morant

Walter Rada Olivia Moore Md. Arefin

https://anraja.commons.gc.cuny.edu/
mailto:ponder@hunter.cuny.edu
http://ponder-lab.github.io


Sample Projects

Migrating Imperative Deep Learning Programs to Graph Execution
Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep
Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code
that supports symbolic, graph-based Deep Neural
Network (DNN) computation. While hybrid

approaches aim for the "best of both worlds," the challenges in
applying them in the real world are largely unknown. We conduct a
data-driven analysis of challenges—and resultant bugs—involved in
writing reliable yet performant imperative DL code by studying 250
open-source projects, consisting of 19.7 MLOC, along with 470 and
446 manually examined code patches and bug reports,
respectively. The results indicate that hybridization: (i) is prone to
API misuse, (ii) can result in performance degradation—the
opposite of its intention, and (iii) has limited application due to
execution mode incompatibility. We put forth several
recommendations, best practices, and anti-patterns for effectively
hybridizing imperative DL code, potentially benefiting DL practitioners, API designers, tool developers, and
educators.

Refactorings and Technical Debt in Machine Learning Systems
Machine Learning (ML), including Deep Learning (DL), systems, are pervasive in today’s
data-driven society. Such systems are complex; they are comprised of ML models and many
subsystems that support learning processes. Unfortunately, there is a gap in knowledge about how
ML systems actually evolve and are maintained. In this project, we fill this gap by studying

refactorings, i.e., source-to-source semantics-preserving program transformations, performed in real-world,
open-source software, and the technical debt issues they alleviate. We analyzed 26 projects, consisting of 4.2
MLOC, along with 327 manually examined code patches. The results indicate that developers refactor these
systems for a variety of reasons, both specific and tangential to ML, some refactorings correspond to established
technical debt categories, while others do not, and code duplication is a major cross-cutting theme that particularly
involved ML configuration and model code, which was also the most refactored. The results can potentially assist
practitioners, tool developers, and educators in facilitating long-term ML system usefulness.

Safe Automated Refactoring for Intelligent Parallelization of Java 8 Streams
The Java 8 Stream API sets forth a promising new programming model that incorporates functional-like,
MapReduce-style features into a mainstream programming language. However, using streams efficiently may
involve subtle considerations. For example, although
streams enable developers to run their code in parallel

with little alteration, it is often not obvious if such code runs more
efficiently this way. In fact, under certain conditions, running stream
code in parallel can be less efficient than running it sequentially.
Moreover, it can be unclear if running sequential stream code in
parallel is safe and interference-free due to possible lambda
expression side effects. This project involves an automated
refactoring approach that assists developers in writing optimal stream
client code in a semantics-preserving fashion. Based on a novel data
ordering and typestate analysis, the approach consists of refactorings
that include preconditions and transformations for automatically determining when it is safe and possibly advantageous to
convert a sequential stream to parallel and improve upon already parallel streams. The approach is implemented as a plug-in
to the popular Eclipse IDE utilizing both WALA and SAFE.


