Automated Refactoring to
Reactive Programming

Calvin Huang and Md Uddin

Asynchronous Programming

Asynchronous programming is a form of parallel programming that allows a unit of work to run separately
from the primary application thread. When the work is complete, it notifies the main thread (whether the work

was completed or failed).

Java has many Asynchronous constructs
some of which are low level complicating
communication with the main thread.

Java also provides constructs that provide
abstractions for Asynchronous constructs

Constructs total %

java.lang. Thread 40,988 14.86%

-nt . EXecutors 11,708 4.24%

va. wcurrent. Ut UrE 5.718 2.07%

3 swing.SwingWorker 1.651 0.60%
java.util.concurrent. FUtureTask 1,372 0.50%
-om.gocgle....ListenableFuture 295 0.11%
avafx.concurrent. Task 163 0.06%

tch.Futures 122 0.04%

2 urrent . FOrkJoinTask 92 0.03%
x.esb. ASyncResult 82 0.03%

avax.ws.rs.container. ASYNCcResponse 31 0.01%
javax.en wcurrent.ManagedTask 19 0.01%
ra.u =.CompletableFuture 7 <0.01%
org.springframework.scheduling.annctation. ASYNC 1 <0.01%
Projects with asynchronous constructs 46,208 16.75%
All Java projects 275.879 100.00%

Reactive Programming

Reactive Programming is a development model structured around asynchronous data streams.
ReactiveX is a library for asynchronous RP that provides abstractions and operators to process and
combine event streams

Observable, which is the source of an event stream
An Observer can register to an Observable and an Observer can be notified of event occurrences

Observables can be chained and executed on different threads

obtain a stream of Data from the network as
an Observable

all data that is null gets filtered out

the data is transformed to a String and "
transformed" is added to the end

Finally, the result is printed to the command
line

| Observable<Data> data = getDataFromNetwork();
2 data

3 .filter(d -> d '= null)

4 .map(d -> d.toString() + " transformed")

5 .subscribeOn (Schedulers.computation())

6 .subscribe(d ->

7 System.out.println("onNext => " + d));

Observable Visual

This is the timeline of the These are items emitted This vertical line indicates
Observable. Time flows by the Observable. that the Observable has

from left to right. // \‘\\ completed successfully.

. . . q ' . These dotted lines and

; \ 4 \ 4 \ 4 \ 4 \ / f\ this box indicate that a

transformation is being
flip <—applied to the Observable.
/ The text inside the box

. . . —~— shows the nature of the
v \4 : transformation.
50 -
This Observable is If for some reason the Observable
the result of the terminates abnormally, with an error, the

transformation. vertical line is replaced by an X.

Reason for Automated Refactoring of Asynchronous programs to Reactive
Programs.

Asynchronous applications are notoriously error-prone to implement and to maintain — greatly benefit
from reactive programming because they can be defined in a declarative style, which improves code
clarity and extensibility.

Declarative Style - Write down what you want not how.
filter()

.map()
.reduce()

Or other functions that you declare

studies indicate that RP increases the correctness of program comprehension not requiring more time
or advanced programming sKkills

Purpose of this paper

Produce a technique to refactor common Java asynchronous constructs to RP.

Design 2RX, a plugin that refactors code into RxJava Observables

Evaluate the approach with automatic testing and code inspection, showing that it is applicable on a
broad amount of code that uses asynchronous constructs, providing a large coverage of construct and

exhibits good execution time

Release a new large dataset of third-party projects suitable for research on asynchronous
programming in Java.

| public abstract class DocumentLoader
2 extends SwingWorker<List<Document>,

SN0 &W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Refactoring an OCR Application

private File[] files;

Document> {

protected List<Document> doInBackground()
throws Exception {

}

List<Document> resulfis =
for (File £ : files) {
Document d = new Document (...
results.add(d);
publish (d);

}
return results;

£

N B

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

public void load(File... files) {
this.files = files;
execute();

}

protected void process (List<Document> chunks) {
fetchResults (chunks);

}
protected void done() {

List<Document> documents = get ();

}
public abstract wvoid fetchResult (
List<Document> result);

Refactoring on OCR Application

| public abstract class DocumentLoader 27 public void load(File... files) {
2 extends(SWSubscriberkList<Document>, Document>{ 28 this.files = files;

3 29 (executeObservable();)

4 private File[] files; 30 }

5 = . 31 protected void process (List<Document> chunks) {
6 (private Observable<SWEvent<List<Document>, 32 fet chResult (chunks) ;

7 Document>> getObservable() { 33) d

8 | Emitter<List<Document>, Document> emitter = y

9 new SWEmitter<List<Document>, Document>() { 34 protected void done() {

10 protected List<Document> doInBackground () 35 ° e

11 throws Exception { 36 List<Document> documents = get();
12 List<Document> results = ... 37 LN

13 8)

14 for (File £ : files) { 39 public abstract void fetchResult (
15 g 40 List<Document> result);

16 Document d = new Document (... £ ...); 41

17 results.add(d); e

18 publish (d) ; 423

19 e

20 }

21 return results;

22 ¥ Yo

23 return Observable.fromEmitter (emitter,
24 Emitter.BackpressureMode.BUFFER) ;
25 }

NE

Refactoring to RP

The key idea of the refactoring is to transform the values generated by asynchronous computations
into an event stream that emits an event whenever a new value is generated

Observable emits an event for each results generated by the asynchronous computation.

Target two Java constructs for asynchronous programming:
SwingWorker and Futures

SwingWorker

Java.swing.SwingWorker

SwingWorker is a construct defined in the Java Swing library. It asynchronously executes the code in
its dolnBackground method, which returns the result of the computation.

SwingWorker can emit intermediate values during the asynchronous execution.

Refactoring SwingWorker to Observable requires to consider two major differences between the two
constructs:

SwingWorker does not only emit a final result, but also intermediate results with a different type
SwingWorker keeps track of the current status of the computation — if it is still running or if it has
already finished

SwingWorker

To achieve the functionalities of SwingWorker with Observable there needs to be three helper classes

SWEmitter produces an event for each call to the a certain method and for the final result
SWSubscriber implements the SwingWorker API on top of the emitter

SWEvent is the type of events produced by the Observable, holding either an intermediate or a final
result

Helper classes enable refactoring more cases, as they take over some of the responsibility of
preserving the functionality during the refactoring.

Helper classes complicate the code introducing additional classes and functionalities

Futures

Java.util.concurrent.Future

A future is a code block that has not been computed yet, but is available eventually.

Refactoring to RP relieves developers from handling the emission of the value explicitly as RP will
handle the emitted value using the Observer

Enables RP’s support for functional composition and asynchronous execution

ExecutorService()

The ExecutorService is the alternative to Java’s Timer and perhaps debated to be optimized for the
following reasons.

e Unlike Timer, ExecutorService is not sensitive to changes within the systems internal clock

e Timer has only one thread which can backlog other tasks that need to be done when a long
running task is using the thread

e Runtime exceptions can kill the only thread which will kill the Timer

Elastic Search

——
| Exa ervi : -
2 Ligt<F L T -
3 new 2 8 L) ;
4
5 for (int - T)
6 list.add
7 0 bm new ble
8 A0verride
9 public List<T> call() throws Except
10 List<T> results - new ArrayList<T> ()
11 latch.await();
12 while (count .decrementAndGer () >
13 results . add(executeo (1);
14 return results;
15
16)
iy A
18
19 for (Future T u
20 re { get |

(a) Onginal code.

In line 1, an ExecutorService creates a pool
(scheduler)

In line 2-3, a List is defined that stores a Future of type
List<T>. This will be used to create a task to be sent to
the scheduler.

In Line 7, we push a task into the ExecutorService
Line 9-15, task is defined in the call method of Callable (Lines

9-15) which returns a Future for the task result that is then
added to the list

Elastic Search

ExecutorService pool - ...

2 List<Future<List<T>>> list =
3 new ArrayList<Future<List<T>>>();
4

S5for (int i = 0; i < numTasks; i++) |
6 list_ add(
T poel.submit (new Callable<List<T>>

{)

8 AOverride

9 public List<T> call() throws Exception {

10 List<T> results = new ArrayList<T>();
11 latch.await();

12 while (count .decremantAndGer () >= 0)
13 results.add(executor.run());

14 return results;

15 }

16 1));

iy A

18

19 for (Future<List<T>> future : list) |
20 results.addAll (future.get());

-

(a) Oniginal code.

In line 14, the task waits for the result of another executor
and retrieves the result — the List returned by the Future

Between lines 5 and 14 ,the task is executed asynchronously

How can we refactor?

e There are several ways we can reap the benefits of refactoring
original code into reactive programming paradigm

e Most influential is using Rx’s Observable instead of Future

e Stop blocking during asynchronous calculation

ExecutorService pool = ...
Li ervablexList<T>>> list = e The list now stores Observable instead of

new ArrayList<{ObservablexList<T>>>();

Future(3)

for (int i = 0; i < numTasks; i++4)

1

list . add((Observable. fromFuture (

(= R o o B

~J

- 11 N - -

s e, o TR e Observable is created from the same Callable that

é&énc List<T> call() throws Exception | was submitted to the executor(9-15)
I 12 ults = new ArrayList<T>();

S O oo

R RRABET S DY e The Observable uses a Scheduler to run
cutar.run(}); } asynchronously (16)

16 1), Schedulers.computation(}))); } e The Future is still executed according to the
18 ExecutorService — only the Observable operates on

T ('

19 for ((OBserVeblekList<T>> future : list)(the Scheduler.

20 results.addAll (future.(blockingSingle()));

So what has changed?

e Many improvements have been made by replacing the Future type with an Observable.

e Unlike future, Observable doesn’t block when returning the data opposed to Future.get()
in the initial implementation

e |t becomes truly asynchronous as the tasks can be done in the future while older tasks
are still being computed.

e With Future, the call to .get() causes our program to run momentarily synchronously as it
blocks the program from attending to other tasks.

e Future is not easy to optimize for asynchronous execution flows as the latency varies for
each execution.

Preconditions

Before applying a refactoring, it is crucial to check whether certain conditions are correct in order to see if
the certain parts of code can be refactored. Like if a future is a standard future.
Three preconditions for applying refactoring on a portion of asynchronous code(Future or SwingWorker)

The asynchronous computation isn’t cancelled. ReactiveX provides no way to cancel asynchronous
computations of Observables, but only to unsubscribe an observer (which does not cancel the running
computation). Why is that? Suppose we have a network request being scheduled and we decide to cancel
the request, we won’t be able to cancel the internal computations as RxJava is not aware of what lies inside
the observable therefore cannot cancel it from happening until finish. We are able to however unsubscribe it
from the scheduler.

Preconditions (Continued)

A notable disadvantage that using Observable takes away is the ability to check the internal state
during the asynchronous process. Most asynchronous constructs provide us with ways where we can
directly retrieve the current state of an asynchronous execution. Therefore, since we do not have this
functionality, a user should consider this before using it. Furthermore, Future.isDone() is used to solve
such problems and has the upper hand over Observables.

Solution for Retrieving Old State

One of the reasons we can'’t retrieve current (old state) with observables is because reactive
programming is against shared state. The solution to this is convoluted as it can break other things not
seen at first. A programmer can extend the Observable to subclasses but this creates problems with

the onSubscribe() callback.

Implementation

designed 2RX as an Eclipse plugin for refactoring Java projects.

2RX is an API that allows retrieving the AST of a compilation unit, performing static data flow analyses,
identifying a specific Java construct, manipulating the AST, and outputting the refactored code.
Implemented an automatic precondition checker for both the constructs currently supported.

The checker is based on a flow-sensitive static analysis on Java source code.

Evaluation: Research Questions

Which fraction of asynchronous constructs used in real-world projects is supported by 2RX?
How many occurrences of the supported asynchronous constructs can 2RX correctly refactor?(how
many cases satisfy the preconditions that 2RX requires to perform the refactoring and lead to

refactored code that is correct and achieves the same functionality of the original code.)

Is 2RX fast enough to be usable by developers?

Dataset:

Used Boa, which provides a snapshot of all public GitHub projects from 2015, consisting of 380,125
projects.

275,879 projects containing Java source files.

46,208 Java projects contain at least one asynchronous construct.

Found a total of 7,133 projects that use at least one of the two supported constructs(SwingWorker and
Java Future)

5,718 projects use Java Future and 1,651 projects use Swingworker.

Removed projects that do not use one of the popular build tools Maven or Ant to automate the
evaluation (automatically tested the refactored code as well as checked whether the refactored code
compiles)

4,652 projects for Future and 1,118 projects for SwingWorker

Automatic Test Generation:

To evaluate the correctness of the refactorings, they ran unit tests for each project.

The refactoring does not change the functionality of the code.

To automatically test the refactored code, they implemented a framework based on Randoop. The
generated tests capture the behavior of the original code, and are run again on the refactored code to
ascertain that programs are behaviorally equivalent to the original code

Results

Stars Project | ;0"‘:] -‘[;l::: LOC files ¢? t?
3058 Zookeeper 8 0 16051 83956 671 v e
1777 Disunity 1 0 7733 5720 113 v /
1285 Gitblit 3 0 13378 63910 415 v V/
661 OptaPlanner 2 0 3L138 60219 N6 Vv @
565 Jabref 1 0 20756 93268 698 v V/
486 Nodebox 2 0 9926 32244 283 v /7
150 ATLauncher 1 0 5941 46292 388 v @
109 CookieCadger 4 0 1.976 4415 AR® VL WG
89 PIPE 3 0 13676 73597 732 v /
70 BurpSentinel o0 1056 10217 132 v /
(a) SwingWorker.
Stars Project cond M ;o0 files o7 &2
y n (ms)

23495 Elasticsearch 4 0 261,132 370006 3595
6152 JUnit 1 0 4577 24218 375 / V
5820 DropWizard 2 1 48910 17,708 361 v ¢
4871 Mockito 2 0 104409 52871 822 / @&
4790 Springsided 0 2 8266 20293 19 / /
4424 Titan 1 3 116,117 40301 531 /Y @
774 AsyncHttpClient 105 0 15402 29739 34 7/ g
3327 Graylog2Server 0 5 47839 138663 204 v V
3018 Java Websocket 0 1 1,653 5117 2 /7 /
2840 Bilog 0 1 16217 14635 173 v /

(b) Java Future.

SwingWorker: all occurrences of asynchronous constructs pass
the preconditions

Compilation after refactoring succeeds for every project. Automatic
test generation fails for 3 projects.

Future: all occurrences passed the preconditions and 3 projects
failed the automatic test generation. 89.8% of occurrences were
capable of being refactored.

2RX is capable of refactoring 91.7% of cases in total with 6

projects that failed the automatic test generation.
~366 ms/1K LOC for SwingWorker, and ~1121 ms/1K LOC for Java Future

Threats To Validity

Internal Validity:There can be some unnoticed differences in behavior that the Automatic test doesn’t
pick up.

They mitigated this by inspecting all refactoring manually and determined if they were correct with a
third party of people and themselves.

External Validity: Whether their results can be generalized

Consider codebases developed by different teams, which promises variety in coding style.

Manual inspection showed a diverse usage of asynchronous constructs

Futures used with Executor, custom implementations, or as part of collections, amongst others.

Increasing confidence that the results presented in this paper generalize to most Java projects

Conclusion

They are currently extending 2RX to support more constructs and improve its applicability.

They hope that, equipped with 2RX, more and more programmers can bring the design benefits of RP
to their projects.

The SwingWorker refactoring is faster than the Future refactoring, because the precondition analysis of
Future is more involved because the helper classes in the SwingWorker refactoring remove some of
the need of certain preconditions.

They consider these speeds acceptable as it only took at least 3 mins to refactor a large program and
you only need to refactor a program once.

